Учёные из Института астрофизики имени Лейбница в Потсдаме (AIP) и Института космических наук Барселонского университета (ICCUB) представили новую модель машинного обучения для эффективной обработки данных по 217 миллионам звёзд, наблюдавшихся в ходе миссии Gaia. Этот подход открывает новые возможности для картирования характеристик звёзд и улучшения понимания структуры Млечного Пути.
Третий выпуск данных космической миссии Gaia Европейского космического агентства предоставил астрономам доступ к улучшенным измерениям 1,8 миллиарда звёзд, что представляет собой колоссальный объём данных для исследования Млечного Пути. Однако эффективный анализ такого большого набора данных является серьёзной проблемой. В исследовании учёные изучали использование машинного обучения для оценки ключевых свойств звёзд с использованием спектрофотометрических данных, предоставленных обсерваторией Gaia.
Модель была обучена на данных о 8 миллионах звёзд и достигла надёжных прогнозов с небольшими неопределённостями. Работа опубликована в журнале Astronomy & Astrophysics.
«Базовая технология, называемая деревьями с экстремальным градиентным усилением, позволяет с беспрецедентной эффективностью оценивать точные характеристики звёзд, такие как температура, химический состав и затенение межзвёздной пылью. Разработанная модель машинного обучения SHBoost выполняет свои задачи, включая обучение модели и прогнозирование, в течение четырёх часов на одном графическом процессоре. Этот процесс ранее требовал двух недель и 3000 высокопроизводительных процессоров», — говорит Арман Халатян (Arman Khalatyan) из AIP и главный автор исследования.
Этот метод машинного обучения значительно сокращает время вычислений, потребление энергии и выбросы CO2. Это первый случай успешного применения такого метода к звёздам всех типов одновременно.